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INTRODUCTION

The imposition of a spatial discretization onto the discrete
ordinates (S N) neutron transport equation results in a devia-
tion from the spatially continuous equation that is defined as
the spatial discretization error. Like the numerical solution
itself, the spatial discretization error must be estimated, as
knowledge of the true error would imply knowledge of the
true solution.

Previous works [1–5] have developed a posteriori error
estimators, but these are often in the context of adaptive mesh
refinement (AMR), which places precedence on the ability to
estimate the error spatial profile rather than the estimator’s
accuracy in quantifying the true error. Thereupon, we have pre-
viously developed the residual source estimator [6], a two-step
error estimator in which: first, the residual, the deviation from
particle balance when a spatial discretization is applied to the
transport equation, is approximated using Taylor Expansions
of the true solution; second, the residual is used as distributed
source for a transport-like problem, in which the solution is
the spatial discretization error.

We have tested the residual source estimator on a variety
of fixed-source problems using the Method of Manufactured
Solutions (MMS) [7] to generate true reference solutions. In
this work comparison of the residual source estimator versus
two estimators that have performed well in previous works,
the Ragusa-Wang (RW) estimator [2] and the Duo-Azmy-
Zikatanov (DAZ) estimator/indicator [1], is summarized and
conclusions about the utility of the residual source estimator
vis-a-vis the other two estimators are reached.

THEORY

We test the error estimators solving the one-speed S N
neutron transport equation in a two-dimensional Cartesian
domainD = [0, X] × [0,Y], comprising a homogeneous, non-
multiplying, isotropic scattering medium,

∇ ·Ωnψn(x, y) + σtψn(x, y) = σs

M∑
m=1

wmψm(x, y) + q(x, y),

for n = 1, . . . ,M, ∀(x, y) ∈ D, (1)

with fixed source incoming boundary conditions (BCs),

ψm(x, y)|n̂·Ωm<0 = ψ[BC](x, y),
for m = 1, . . . ,M, ∀(x, y) ∈ ∂D. (2)

For the purposes of this work, the solution to the above
equation will be considered the “true" solution versus the solu-
tion to the spatially discretized equation. The spatial discretiza-
tion method used in this work is Discontinuous Galerkin Finite

Element Method of spatial order Λ (DGFEM-Λ), represented
by Eq. 3, specifically DGFEM-0, which approximates the so-
lution in discrete cell K(i, j) ⊆ D, K(i, j) = (xi−1, xi) × (y j−1, y j),
as a constant over space, generally discontinuous across neigh-
boring cells.

LΛ
h ψ

Λ
h = SψΛ

h + ΠΛ
h q (3)

In the above equation, LΛ
h is the bilinear form of the

DGFEM-Λ transport operator, S is the S N scattering operator,
ΠΛ

h is the operator that projects a function onto the DGFEM-Λ
h-mesh space, and ψΛ

h is the solution to the discrete S N equa-
tion. We keep the cell size uniform across the domain, such
that i = 1, . . . ,NX and j = 1, . . . ,NY , and X and Y are both
fixed at 1 cm. The cell size h is equal to the maximum of the
cell widths in the x- and y-dimension, ∆x and ∆y, respectively.
The spatial discretization error is mathematically defined as

εΛ
h ≡ ψ

Λ
h − ΠΛ

h ψ, (4)

where ψ is the true solution. The MMS is used to generate
true reference solutions for comparison with the DGFEM-0
solutions and error estimators. The MMS reference solutions
as developed by Duo in [7] sets the combined (fixed + scat-
tering) source Q to a constant over the domain and solves
Eq. 1 and 2 with no approximations in space. This solution
is interfaced with DGFEM-0 by producing a resultant fixed
source (q = Q−Sψ) and using it as an input for the DGFEM-0
problem.

TABLE I. MMS Boundary Conditions
Cr ψ[N,S ] ψ[W,E]

C0 0 (σt − σs)/σt

C1 0 0

The singular characteristics (SCs) are significant features
of the true solution in the S N method that impact the quality
of the DGFEM-0 solution and resultant error estimators. SCs
are rays that emanate from the intersection point of incoming
boundaries for a given ordinate n with a slope ηn/µn, across
which the solution is discontinuous in some derivative. The
continuity order Cr represents the lowest order-r derivative
of the solution that is discontinuous across the SCs, and r is
dictated by the BCs as shown in Table I, where ψ[N,S ] and
ψ[W,E] are the incoming angular flux values on the north and
south boundaries and west and east boundaries, respectively.
The dependence of the C0 BCs on the cross-sections ensures
that the resultant fixed source does not attain negative (non-
physical) values. Provided the mesh is not aligned with the
SCs, the locations of which are known a priori, the disconti-
nuities in the true solution cannot be accurately represented
by a DGFEM-0 solution, which is locally continuous. Hence,
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poor accuracy results in SC-intersected cells and other cells
downwind due to numerical spreading of error [8].

ERROR ESTIMATORS

An effective error estimator must go outside the function
space of the discrete solution to capture some of true solution
behavior that is truncated by the spatial discretization. Three
estimators that accomplish this are compared in this work: the
residual source estimator (LeR) [6], the RW estimator [2], and
the DAZ estimator/indicator [1].

The three estimators are presented in the following sub-
section but first we introduce the quantities that will form the
metrics of comparison. We facilitate analysis of the discretiza-
tion error, which is in the same space as the numerical solution,
by recasting it in local L2 norms. The “angular" L2 norm has
been found to be more accurate for error estimator accuracy
comparisons, and is given by,

E(i, j)
ang. =

√√√ N∑
n=1

wn

∫
∆xi

dx
∫

∆y j

dy
(
εΛ

h,n(x, y)
)2
. (5)

The global angular L2 error norm is calculated by Eang. =(∑NX
i=1

∑NY
j=1 E(i, j)2

ang.

)1/2
. In the following sections, when an er-

ror estimate is implemented, the angular error estimate is
represented by ε, and the error norm is represented with a
lower-case e. It is commonplace to use another metric, the
local “effectivity index", which represents the accuracy of an
error estimator,

θ
(i, j)
ang. =

e(i, j)
ang.

E(i, j)
ang.

, (6)

and the global effectivity index is calculated as θang. =
eang.

Eang.
.

Residual Source Estimator

The residual source estimator (LeR) was developed by
Hart and Azmy [6] based on a concept originally explored by
O’Brien and Azmy [9]. When the true residual,

RΛ
h ≡ S

[
ΠΛ

h ψ
]

+ ΠΛ
h q − LΛ

h

[
ΠΛ

h ψ
]
, (7)

is used as a fixed-source for a transport like problem,

LΛ
h ε

Λ
h = SεΛ

h + RΛ
h , (8)

the true spatial discretization error is the solution. Of course,
knowledge of the true residual implies knowledge of the true
solution, so an a posteriori residual approximation method
has been developed in which the true solution is approxi-
mated using a Taylor Expansion, and the DGFEM-0 solution
is used to approximate point-wise derivatives in the resultant
approximated residual expression [6]. The estimated Taylor
Expansion with Approximated Derivatives (TE-AD) residual,
R, is used in conjunction with LeR to get the LeR/TE-AD
estimator,

LΛ
h ε

Λ
h = SεΛ

h + RΛ
h , (9)

and estimate εΛ
h is inserted in place of εΛ

h in Eq. 5.
We also observe the behavior of the TE-AD residual as an

error indicator due to its suspected conservatism and possibil-
ity to be calculated en-route to a LeR/TE-AD estimate. This
is done by simply inserting the TE-AD residual, which is in
the same space as the discretization error, into the error norm
equations in place of εΛ

h .

Ragusa-Wang Estimator

To obtain an estimate with the RW estimator, the mesh is
uniformly refined and a new numerical solution is found on
the refined (h/2) mesh. This h/2-mesh solution is used as a
reference solution for the original h-mesh solution in place of
the true solution,

e(i, j)
RW,ang. =

( N∑
n=1

wn

∫
∆xi

dx
∫

∆y j

dy
(
ψΛ

h,n(x, y)−

[
Πhψ

Λ
h/2,n

]
(x, y)

)2)1/2

. (10)

This method has been found to be accurate and precise [2, 9],
but it comes at the cost of the memory and computation time
required to solve an additional system of equations with 4
times as many unknowns (in 2D).

Duo-Azmy-Zikatanov Estimator

The DAZ estimator was derived from a dual argument es-
timator using discontinuous finite element theorems to bound
the global error from above for C1 or smoother problems [1,7].
In the global sense it is given as

eDAZ,ang. = C

( NX∑
i=1

NY∑
j=1

N∑
n=1

ĥ2
K(i, j) wn×∫

∆xi

dx
∫

∆y j

dy
(
R

(i, j)
n (x, y)

)2
)1/2

+ C

( NX∑
i=1

NY∑
j=1

N∑
n:Ωn·n̂<0

2ĥK(i, j) wn×∫
∂K(i, j)
−

dS |n̂ ·Ωn|
{
ψ−Λ,n − ψ

+
Λ+l,n

}2
)1/2

, (11)

where ĥ is the cell diameter, − and + refer to the internal
and external traces of the angular flux, respectively, and C is
a constant related to the norm of the dual problem and the
smoothness of the true solution, assumed in this work to be
C = 1. The approximated residual and higher-order external
trace are approximated by doing an additional higher-order
sweep on a DGFEM-(Λ + l) problem using the converged
scattering source from the low order problem and the problem
fixed source [1]. It is heuristically applied locally by removing
the summation over cells and to C0 problems, and in these
contexts is referred to as an “indicator" rather than an estimator,
by the fact that the bounding theorems no longer hold.
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ESTIMATOR COMPARISON

We observe the varying estimator performance with scat-
tering ratio c, optical thickness (via σt), and the continuity
order, and have highlighted some cases here. For all prob-
lems Level-Symmetric S 4 quadrature is used, l is fixed at 1,
and the mesh is fixed at NX = NY = 512 as an ideal highly-
converged problem. We condense the NX × NY local estimates
in each problem to several quantities: the number of cells with
θang. ≥ 1, an indicator of local conservatism, the number of
cells with |θang. − 1| ≤ β, where β > 0, an indicator of accu-
racy, and the standard deviation of log10 θang., an indicator of
precision.

Fig. 1. Fraction of Cells that have θang. ≥ 1, c = 0.9, C1

Fig. 2. Fraction of Cells that have θang. ≥ 1, c = 0.9, C0

Figures 1-2, which plot the fraction of cells with conser-
vative error estimates for c = 0.9, show the DAZ indicator
is most locally conservative, generally. The TE-AD residual
shows promise as an indicator as well, as it is quite conserva-
tive at larger optical thicknesses. The LeR/TE-AD estimator
is only moderately conservative, though, and the RW esti-
mator has a tendency to underestimate due to the theoretical
under-estimation of an h-refinement error estimator for already
converged meshes.

Figures 3-4, which plot the fraction of cells within some

Fig. 3. Fraction of Cells that have |θang. − 1| ≤ β, c = 0.1, C1

Fig. 4. Fraction of Cells that have |θang. − 1| ≤ β, c = 0.1, C0

accuracy range fraction β for c = 0.1, highlight that the
LeR/TE-AD estimator is most accurate for C1 problems re-
gardless of problem parameters, but suffers in C0 problems
where SCs break assumptions that lead to the TE-AD residual.
The RW estimator is inaccurate by most of these β metrics for
C1 problems because it underestimates too much, but in C0

problems it has slightly better accuracy because the distribu-
tion of effectivity values is altered due to the discontinuities in
the true solution. The TE-AD residual is somewhat accurate,
but the DAZ indicator is not accurate by these β metrics, in
direct correlation to its bounding theorems derivation assump-
tion.

Fig. 5. Standard Deviation of log10 θang., c = 0.1, C1
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Fig. 6. Standard Deviation of log10 θang., c = 0.1, C0

Figures 5-6 plot the standard deviation of log10 θang. as an
indicator of precision for c = 0.1. Note that effectivities are
not distributed following a normal curve, but we have found
that they nonetheless look normal-distribution-like in log10-
scale. The RW estimator provides an excellent estimate of the
error profile for C1 problems, and the LeR/TE-AD estimator
is competitive in this regard. However, for C0 problems, both
estimators perform poorly relative to their performance in C1

problems, and the DAZ indicator is generally the best error
profile estimator for these C0 problems. The TE-AD residual
does not show promise as a shape estimate, as it is consistently
the worst in this respect.

CONCLUSIONS

Each local estimator is highly dependent on the continuity
order of the problem. The LeR/TE-AD estimator is most
accurate for C1 problems regardless of problem parameters,
but in C0 problems its accuracy relative to other estimators is
dependent on the impact of the solution discontinuities (which
is dependent on scattering ratio and optical thickness). The
RW estimator suffers from inaccuracy due to its propensity
to underestimate the true error, but it underestimates very
precisely, and is superior to all estimators as an error profile
estimate for C1 problems, though the LeR/TE-AD estimator
is competitive in this regard. However, for C0 problems this
advantage is nullified. The DAZ indicator is inaccurate by the
metrics used in this work, but it is locally conservative for most
problems examined due to its origin as a bound on the global
error. Because it does not suffer from worsened precision in
C0 problems, it is advantageous as an error profile estimate.
The TE-AD residual is moderately locally conservative and
somewhat accurate when used as an error indicator, but it is
poor as an error profile estimate, and we have found that the
true (and TE-AD) residual has a different convergence order
than the error, making its use as a global or local indicator
questionable.

Future work will focus on modifying residual approxi-
mations in cells intersected by SCs to enhance accuracy and
precision for C0 problems. We also seek to expand this analy-
sis to Λ = 1 or higher problems, as DGFEM-0 is considered
insufficient for most problems.
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